1. (a) (i) Calculate correctly $\frac{0.0880 \times 25.0}{1000}=2.20 \times 10^{-3} \mathrm{~mol}$

OR $0.00220 \mathrm{~mol} \checkmark$
ALLOW 0.0022 OR $2.2 \times 10^{-3} \mathrm{~mol}$
(ii) Calculates correctly $\frac{0.00220}{2}=1.10 \times 10^{-3} \mathrm{~mol}$

OR $0.00110 \mathrm{~mol} \checkmark$
ALLOW 0.0011 OR $1.1 \times 10^{-3} \mathrm{~mol}$
ALLOW ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes
(iii) $\frac{0.00110 \times 1000}{17.60}=0.0625 \mathrm{~mol} \mathrm{dm}^{-3}$

OR $6.25 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$
ALLOW 0.063 OR $6.3 \times 10^{-2} \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3}$
ALLOW ECF for answer (ii) \times 1000/17.60
OR
ECF from (i) for answer (i)/2 $\times 1000 / 17.60$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes
(b) (i) (The number of) Water(s) of crystallisation

IGNORE hydrated OR hydrous
(ii) $142.1 \checkmark$

ALLOW 142
ALLOW M_{r} expressed as a sum
ALLOW ECF from incorrect M_{r} and x is calculated correctly
$x=\frac{(322.1-142.1)}{18.0}=10$
ALLOW ECF values of x from nearest whole number to calculator value
ALLOW 2 marks if final answer is 10 without any working
2. (i) O goes from -2 to 0

Oxidation numbers may be seen with equation
N goes from +5 to +4
N is reduced AND O is oxidised
Third mark is dependent upon seeing a reduction in oxidation number of N and an increase in oxidation number of O
ALLOW ECF for third mark for N is oxidised and O is reduced if incorrect oxidation numbers support this
IGNORE references to strontium
IGNORE references to electron loss OR gain
DO NOT ALLOW 'One increases and one decreases'
(ii) Calculates correctly:

Mol of $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}=\frac{5.29}{211.6}=0.0250$
ALLOW 0.025
Calculates correctly:
Mol of gas $=5 / 2 \times 0.0250=0.0625$
ALLOW ECF for first answer $\times 2.5$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

Calculates correctly:
Volume of gas $=24.0 \times 0.0625=1.50 \mathrm{dm}^{3}$
ALLOW ECF for second answer $\times 24(.0)$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes
DO NOT ALLOW ECF of first answer \times 24(.0) (which gives
$0.6(0) \mathrm{dm}^{3}$) as this has not measured the volume of any gas,
simply 0.0250 mol of solid $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ converted into a gas
i.e. This answer would give one mark

ALLOW $1.5 \mathrm{dm}^{3}$
ALLOW ECF producing correct volume of NO_{2} only
i.e. $1.2(0) \mathrm{dm}^{3}$ would give two marks

OR
ALLOW ECF producing correct volume of O_{2} only
i.e. $0.3(0) \mathrm{dm}^{3}$ would give two marks
3. (i) 0.0268 OR 0.027 OR $0.02675 \mathrm{~mol} \checkmark$
(ii) $1.61 \times 10^{22} \checkmark$

ALLOW 1.6×10^{22} up to calculator value ALLOW
$\boldsymbol{E C F}$ answer to (i) $\times 6.02 \times 10^{23}$
ALLOW any value for N_{A} in the range:
$6.0 \times 10^{23}-6.1 \times 10^{23}$
4.
(a) BaO
$\mathrm{Ba}_{3} \mathrm{~N}_{2}$
Treat any shown charges as working and ignore.
Treat B for Ba as a slip
(b) (i) $\frac{0.11}{137.3} \checkmark$
mark is for the working out which MUST lead to the correct answer of 8×10^{-4} up to calculator value
(ii) 19.2

OR

calculated answer to (b)(i) $\times 24000$
ALLOW 19 up to calculator value.
(iii) 8.0×10^{-3}

OR
calculated answer to $\mathbf{(b)}(\mathbf{i}) \times 10$
ALLOW 8.01×10^{-3} up to calculator value
(iv) any $\mathrm{pH}>7$ but <15

ALLOW a correct range of $p H$.
(c) Less barium to react $\mathbf{O R}$
some barium has already reacted
ALLOW less volume because contains some BaO or $\mathrm{Ba}_{3} \mathrm{~N}_{2}$
(d) reactivity increases (down the group) \checkmark
atomic radii increase OR
there are more shells
there is more shielding OR more screening
the nuclear attraction decreases OR
Increased shielding and distance outweigh the
increased nuclear charge
easier to remove (outer) electrons OR
ionisation energy decreases
USE annotations with ticks, crosses, ecf, etc for
this part.
DO NOT ALLOW more orbitals OR more sub-shells
'More' is essential
ALLOW 'more electron repulsion from inner shells'
ALLOW 'nuclear pull'
IGNORE any reference to 'effective nuclear charge'
ALLOW easier to form positive ion
5. (i) $\mathrm{mol} \mathrm{HCl}=1.50 \times 10^{-2} \checkmark$
volume $\mathrm{HCl}(\mathrm{aq})=75.0 \checkmark$
ALLOW answers to 2 significant figures
ALLOW ecf from wrong number of moles
i.e $\frac{\text { moles of } H C I \times 1000}{0.200}$

ALLOW one mark for 37.5 (from incorrect 1:1 ratio)
(ii) $180 \checkmark$

No other acceptable answer
6. (i) Molar mass of $\mathrm{CaCO}_{3}=100.1 \mathrm{~g} \mathrm{~mol}^{-1}$ (1) $2.68 / 100.1=0.0268 / 0.027(1)$
(ii) $0.0268 \mathrm{~mol} \times 24,000=643 \mathrm{~cm}^{3}$ (1) 1
(iii) moles $\mathrm{HNO}_{3}=2 \times 0.0268$
$=0.0536 / 0.054 \mathrm{~mol}(\mathbf{1})$
(i.e. answer to $(i) \times 2$)
volume of $\mathrm{HNO}_{3}=0.0536 \times 1000 / 2.50=21.4 \mathrm{~cm}^{3}(\mathbf{1}) \quad 2$
7. (i) Simplest (whole number) ratio of atoms/moles/elements
(ii) ratio $\mathrm{Rb}: \mathrm{Ag}: \mathrm{I}=7.42 / 85.5: 37.48 / 108: 55.10 / 127$

$$
\begin{aligned}
& \text { or } 0.0868: 0.347: 0.434 \\
& \quad \text { or } 1: 4: 5 \checkmark \\
& \quad=\mathrm{RbAg}_{4} \mathrm{I}_{5} \checkmark
\end{aligned}
$$

8. (a) (i) $12 \times 50 / 1000=0.600 \mathrm{~mol} \checkmark$
(ii) $4 \mathrm{~mol} \mathrm{HCl} \rightarrow 1 \mathrm{~mol} \mathrm{Cl}_{2} /$ moles $\mathrm{Cl}_{2}=0.15 \mathrm{~mol} \checkmark$ vol of $\mathrm{Cl}_{2}=0.15 \times 24=3.60 \mathrm{dm}^{3} \checkmark$
2nd mark is consequential on molar ratio given
(b) Evidence that the oxidation number of Mn has reduced and one of the oxidation numbers correct (ie MnO_{2} : ox no of $\mathrm{Mn}=+4$ or MnCl_{2} : ox no of $\mathrm{Mn}=+2$
The other oxidation number of Mn is correct, ie in MnO_{2} : ox no of $\mathrm{Mn}=+4$
or in MnCl_{2} : ox no of $\mathrm{Mn}=+2$
9. (i) mass $=0.0500 \times 23.0=1.15 \mathrm{~g} \checkmark \quad 1$
(ii) moles $\mathrm{H}_{2}=0.0250 \checkmark$
volume $\mathrm{H}_{2}=0.0250 \times 24=0.600 \mathrm{dm}^{3} \checkmark \quad 2$
ecf from calculated moles H_{2}
0.0500 mol in $50.0 \mathrm{~cm}^{3} \quad 1$
(iii) concentration $=0.0500 \times 20=1.00 \mathrm{~mol} \mathrm{dm}^{-3}$
10. (i) $2 \mathrm{Na}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O}_{2} \checkmark$ 1
(ii) $\mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{NaOH} \checkmark \quad 1$
correct covalent bonds shown \checkmark
(iii) electron count (14) for rest of molecule correct $\checkmark \quad 2$
11. $\mathrm{M}(\mathrm{BaO})=137+16=153$
moles $\mathrm{BaO}=500 / 153$ or 3.268 mol
moles $\mathrm{Ba}=3.268 / 2$ or $1.634 \checkmark$
mass Ba formed $=1.634 \times 137=224 \mathrm{~g} \checkmark$
accept 223.856209/223.86/223.9 g.
if 6 mol BaO forms 3 mol Ba , award 3rd mark
Alternative method
mass $6 \mathrm{BaO}=918 \mathrm{~g}$
mass $3 \mathrm{Ba}=411 \mathrm{~g}$
1 g BaO forms 411/918 g Ba
500 g BaO forms $223.856209 / 223.86 / 223.9 \mathrm{~g} \mathrm{Ba}$
12. (i) ratio $\mathrm{N}: \mathrm{H}: \mathrm{S}: \mathrm{O}=\frac{24.12}{14}: \frac{6.94}{1}: \frac{27.61}{32.1}: \frac{41.33}{16}: \checkmark$
$=2: 8: 1: 3$
Empirical formula $=\mathrm{N}_{2} \mathrm{H}_{8} \mathrm{SO}_{3} \checkmark$
$\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{SO}_{3}$ is worth 1 mark from consistent use of at nos.
(ii) $\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{3}+\mathrm{SO}_{2} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3} \checkmark$
(Award mark for $\mathrm{N}_{2} \mathrm{H}_{8} \mathrm{SO}_{3}$)
13. (a) (i) Amount of substance that has the same number of particles as there are atoms in 12 g of ${ }^{12} \mathrm{C} /$

$$
6 \times 10^{23} / \text { Avogadro's Number } \checkmark \quad 1
$$

(ii) moles $=\frac{0.275 \times 120}{1000}=0.0330 \mathrm{~mol} \checkmark$
moles $\mathrm{Cl}_{2}=\frac{0.0330}{2}=0.0165 \mathrm{~mol} \checkmark$
(iii) volume $\mathrm{C}_{2}=0.0165 \times 24000=396 \mathrm{~cm}^{3} \quad \checkmark / 0.396 \mathrm{dm}^{3}$
$792 \mathrm{~cm}^{3}$ worth 1 mark (no molar ratio)
$1584 \mathrm{~cm}^{3}$ worth 1 mark (x 2)
units needed.
2
(iv) bleach / disinfectant /sterilising /killing germs $\checkmark \quad 1$
(b) $\mathrm{NaClO}_{3} \checkmark \quad 1$
14. (i) Mass $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ in stibnite $=5 \%$ of $500 \mathrm{~kg}=25.0 \mathrm{~kg}$

Moles $\mathrm{Sb}_{2} \mathrm{~S}_{3}=\frac{25.0 \times 10^{3}}{340} / 73.5 / 73.529 / 73.53 / 74 \mathrm{~mol} \checkmark$
(calculator value: 73.52941176)
If 5% is not used, 1471 mol ; ecf for 2 nd mark
(calculator value: 1470.588235)
If 5% is used $2 \mathrm{nd}, 73.6 \mathrm{~mol}$: OK for both marks
(ii) moles $\mathrm{Sb}=2 \times 73.5 \mathrm{~mol}$
mass $\mathrm{Sb}=2 \times 73.5 \times 122 \mathrm{~g}=17.9 \mathrm{~kg}$
If the 2 isn't used, answer $=73.5 \times 122=8.95$
ecf ans from (i) $x 2$
ecf ans above x 2

OR

$$
\begin{aligned}
& \% \mathrm{Sb}=244 / 340=71.7 \% \\
& \text { mass } \mathrm{Sb}=25.0 \times 71.7 / 100=17.9 \mathrm{~kg} \checkmark(\text { ecf as above })
\end{aligned}
$$

15. (i) Molar mass $\mathrm{CaO}=56.1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$ (anywhere)
moles $\mathrm{CaO}=\frac{1.50}{56.1}==0.0267 / 0.027 \checkmark$ calc: 0.0267379
Allow 56 which gives 0.0268
(ii) moles $\mathrm{HNO}_{3}=2 \times 0.0267$
$=0.0534$ or $0.0535 / 0.053 \mathrm{~mol}$
(i.e. answer to (i) x 2)
volume of $\mathrm{HNO}_{3}=\frac{0.0534(\text { or } 5) \times 1000}{2.50}=21.4 \mathrm{~cm}^{3} \checkmark$
calc from value above $=21.3903743$
If 0.053 mol , answer is $21 \mathrm{~cm}^{3}$ but accept $21.2 \mathrm{~cm}^{3}$
If 0.054 mol , answer is $22 \mathrm{~cm}^{3}$ but accept $21.6 \mathrm{~cm}^{3}$
16. (i) dative covalent, bonded pair comes from same atom/
electron pair is donated from one atom/
both electrons are from the same atom
(ii) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \checkmark \rightarrow \mathrm{CaO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$ or double equation with 2/2/4/1

$$
1
$$

$\begin{array}{ll}\text { 17. (i) } \begin{array}{l}203.3 \mathrm{~g} \mathrm{~mol}^{-1} \checkmark \\ \text { Accept } 203\end{array} & 1\end{array}$
(ii) white precipitate / goes white $\checkmark \quad 1$
(iii) $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
equation \checkmark
state symbols \checkmark
AgCl dissolves in $\mathrm{NH}_{3}(\mathrm{aq})$
(iv) AgBr dissolves in conc $\mathrm{NH}_{3}(\mathrm{aq}) /$
partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$
AgI insoluble in $\mathrm{NH}_{3}(\mathrm{aq}) \checkmark \quad 3$
18. (i) moles $\mathrm{CO}_{2}=1000 / 44 \mathrm{~mol}=22.7 \mathrm{~mol} \checkmark$
volume CO_{2} in $2000=22.7 \times 24=545 \mathrm{dm}^{3}$
(ii) reduction $=545 \times 60 / 100=327 \mathrm{dm}^{3} \checkmark$
19. (i) moles $\mathrm{HCl}=2.0 \times 50 / 1000=0.10$
(ii) moles $\mathrm{Ca}=1 / 2 \times$ moles $\mathrm{HCl}=0.050$
mass $\mathrm{Ca}=40.1 \times 0.050=2.00 \mathrm{~g} / 2.005 \mathrm{~g}$
(accept $40 \times 0.050=2.0 \mathrm{~g}$)
(mass Ca of 4.0 g would score 1 mark as 'ecf' as molar ratio has not been identified)
(iii) Ca has reacted with water
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
state symbols not required
1st mark for H_{2}
2 nd mark is for the rest of the balanced equation
20. (i) moles $\mathrm{Ti}=1.44 / 47.9=0.0301 \mathrm{~mol} / 0.03 \mathrm{~mol}$
(accept use of answer from (b))
(ii) mass of $\mathrm{Cl}=5.70-1.44=4.26 \mathrm{~g}$
moles $\mathrm{Cl}=4.26 / 35.5=0.120 \mathrm{~mol} \checkmark$
$5.70 / 35.5=0.161 \mathrm{~mol}$ gets 1 mark
(iii) $\mathrm{Ti}: \mathrm{Cl}=0.0301: 0.12=1: 4$.

Empirical formula $=\mathrm{TiCl}_{4} \checkmark$
$0.0301: 0.161$ mol gives TiCl_{5} for 1 mark $\quad 1$
(iv) $\begin{array}{ll}\mathrm{Ti}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{TiCl}_{4} \checkmark \\ & \text { (ecf possible from (iii) } \\ \text { covalent } \checkmark\end{array}$
21. (a) $\ldots \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+\mathbf{2} \ldots \mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots . \mathrm{MgCl}_{2}(\mathrm{aq})+2 \ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ 1
(b) (i) moles $\mathrm{HCl}=0.108 \times 500 / 1000=0.054 \checkmark$
(ii) moles $\operatorname{Mg}(\mathrm{OH})_{2}=1 / 2 \times$ moles $\mathrm{HCl}=0.027$
molar mass of $\mathrm{Mg}(\mathrm{OH})_{2}=24.3+17 \times 2=58.3$
(do not penalise 24)
mass $\mathrm{Mg}(\mathrm{OH})_{2}=58.3 \times 0.027=1.57 \mathrm{~g} / 1.5741 \mathrm{~g}$
(accept ans from (ii) $\times 0.027=1.566 \mathrm{~g}$)
(mass $\mathrm{Mg}(\mathrm{OH})_{2}$ of 3.15 g would score 2 marks as 'ecf' as
molar ratio has not been identified)
(iii) Too much if 2.42 g (dose) $>$ ans to (ii)
(If answer to (ii) $>2.42 \mathrm{~g}$ then 'correct' response here would be 'Not enough'
22. (i) Number AND type of atoms (making up a
molecule)/number of atoms of each element
Not ratio
(ii) $\mathrm{P}_{4}+6 \mathrm{Br}_{2} \rightarrow 4 \mathrm{PBr}_{3} \checkmark \quad 1$
(iii) ratio $\mathrm{P}: \mathrm{Br}=16.2 / 31: 83.8 / 79.9$
$/=0.52: 1.05$
/= $1: 2$
Empirical formula $=\mathrm{PBr}_{2}$
Correct compound $=\mathrm{P}_{2} \mathrm{Br}_{4} /$ phosphorus(II) bromide but
not PBr_{2}
23. (i) mass of $\mathrm{Ni}=2.0 \mathrm{~g} \checkmark$
moles of $\mathrm{Ni}=2.0 / 58.7 \mathrm{~mol}=0.0341 / 0.034 \mathrm{~mol}$
(1 mark would typically result from no use of $25 \% \rightarrow 0.136 \mathrm{~mol}$)
2nd mark is for the mass of Ni divided by 58.7
(ii) number of atoms of $\mathrm{Ni}=6.02 \times 10^{23} \times 0.0341$
$=2.05 \times 10^{22} / 2.1 \times 10^{22}$ atoms
Can be rounded down to 2.1 or 2.0 or 2 (if 2.0)
From 8 g , ans $=8.18 / 8.2 \times 10^{22}$
(and other consequential responses)

